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Abstract--An analytical approach to the problem of droplet deposition in annular flow through an annulus is 
presented. The underlying theory, due to Hutchinson et al. (1971), allows the droplet deposition to be 
treated as a diffusion process and the results obtained enable some properties of mass transfer coefficients 
in non-circular geometries to be explained. 

1. INTRODUCTION 

Annular flow is one of the most important two-phase flow regimes as it is found in many types 

of industrial equipment, for example water-cooled nuclear reactors and once through serpentine 

boilers. In the annular flow regime the liquid phase flows as a thin film along the wall (or walls) 
of the equipment and as droplets through the gas phase (figure 1). The liquid droplets are 

entrained from and subsequently deposited onto the liquid film. Consequently any mathematical 

model of annular two-phase flow must describe the processes of liquid droplet entrainment and 

deposition, and this paper is concerned with some aspects of the latter. 
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Figure I. The annular geometry and coordinate system. 
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There are essentially two descriptions of droplet deposition which have been incorporated 
into mathematical models of annular two-phase flow. The first of these assumes that droplet 
deposition is a mass transfer process in which the flux of droplets onto the film is proportional 
to the mean concentration of droplets in the gas core. The "constant" of proportionality, called 
the mass transfer coefficient, has been shown experimentally to be fairly insensitive to the flow 
rates of gas and liquid for a given system pressure in a round tube geometry (Cousins et al. 

1965; Cousins & Hewitt 1968). In addition a model of heated annular flow, due to Whalley et al. 

(1974), which incorporates the above description of droplet deposition gives acceptable predic- 
tions of the liquid flow distribution. The weak link in this approach is that the mass transfer 
coefficient must be known a priori and at present is chosen by reference to a correlation 
developed by Whalley. et al. (1974). The correlation relates the mass transfer coefficient to the 
surface tension and has little, if any, theoretical basis. 

The second description of deposition is due to Hutchinson et al. (1971) and assumes that the 
droplets in the gas core interact with the turbulent eddies in such a way that the deposition 
process is essentially diffusive. The predictions of this theory agree well with experimental data 
and at first sight the second approach would appear preferable to the first in that it is more 
soundly based. However it too suffers from a weak link in that it requires specification of a 
diffusion coefficient. A calculation procedure for the diffusion coefficient is detailed in Hut- 
chinson et al. (1971) but requires the mean value of the droplet size, which is also unknown a 
priori. 

As a result the usual approach to droplet deposition taken in mathematical models is the 
simpler mass transfer method, although Hutchinson et al. (1974) have shown that the diffusion 
approach can lead to slightly improved results. 

The above discussion relates to annular flow in a round tube, but many of the geometries in 
which annular two-phase flow occurs are far more complicated. In order to extend to more 
complicated geometries any model, such as that of Whalley et al. (1974), which has been 
developed for a round tube geometry, great care must be taken to determine which of the 
various assumptions peculiar to a round tube have more general validity. In annular two-phase 
flow correlations and assumptions which relate specifically to the film, for example that of 
constant shear stress throughout the film, may be expected to be applicable in any geometry for 
which the films are thin and well separated. However, those empirical relationships which also 
relate to the gas core, in particular the expressions for the deposition and entrainment mass 
fluxes, require more careful analysis. 

The problem reduces essentially to that of specifying the mass transfer coefficients for 
deposition onto (and entrainment from) each film covered surface. 

Whalley et al. (1975) have extended the heated annular flow model mentioned above to an 
annular geometry by splitting the flow area into two regions and using the concept of a 
hydraulic diameter. The mass transfer coefficients for the inner and outer surfaces were 
determined by optimizing the agreement between the predictions of the model and available 
experimental data. It was found that the mass transfer coefficients were of the same order as 
their values for a round tube at the same pressure and that the predictions of the model were 
not particularly sensitive to the way in which the flow area was divided. These findings enabled 
Whalley (1976) to further extend the model to a rod-bundle geometry by assuming that the mass 
transfer coefficients for each (rod-centred) subchannel were equal and that the method of 
subdivision into subchannels could be based on geometry alone. 

It is the purpose of this paper to deduce, from the assumption that the deposition process is 
described by the model of Hutchinson et al. (1971), relationships between the mass transfer 
coefficients and diffusion coefficient for droplet deposition in an annular geometry. Qualitative 
conclusions concerning the specification of mass transfer coefficients and the method of 
division into subchannels for more complicated geometries can then be drawn. 
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2. MATHEMATICAL FORMULATION 

2.1 Derivation of the di~usion equation 
The process by which particles (solid or liquid) flowing in a turbulent gas stream are 

deposited in a circular tube is modelled in two stages by Hutchinson et al. (1971). In the first 
stage the fraction of particles which approach the wall is calculated by assuming that the radial 
drag on a particle due to the motion of turbulent eddies in the gas results in the particle 
executing a random walk in the cross-section of the tube. The particle concentration profile 
then satisfies a diffusion equation in which the diffusion coefficient is the mean square particle 
displacement per unit time. This coefficient can then be evaluated from a consideration of the 
interaction between the large, energy containing eddies and the particle and, for a round tube, 
may be taken to be constant as a first approximation. For flow through an annulus it is by no 
means obvious that the diffusion coefficient should be radially independent of position. 
However, provided that there is not a large degree of asymmetry in the distribution of length 
scales of the energy containing eddies in a cross-section of the annulus it is reasonable to 
expect the mean square particle displacement due to eddy interaction, and hence the diffusion 
coefficient, to be independent of radial position.t In the second stage of the model, the fraction 
of those particles which approach the wall that are actually deposited is calculated. This 
fraction depends on the thickness of the viscous gas sublayer, but for the purposes of droplet 
deposition in annular two-phase flow may be taken to be unity. 

The diffusion equation for the annulus is best obtained by formulating the problem in 
cylindrical polar coordinates (r, 0, z), as shown in figure 1, in which the annular gap a ~< r ~< b is 
occupied by liquid droplets of concentration C(r, z), axial symmetry being assumed. A mass 
balance over a fixed elementary volume gives 

L {~z [U(z)C(r, z ) ] -  S(r, z)} d e  = L XV,C(r, z ) . n  d~, [2.1] 

where U(z) is the mean gas core velocity, with which the droplets are assumed to move, X is 
the diffusion coefficient, V and Y denote, respectively, the elementary volume and its surface, n 
is the unit vector normal to the surface, 

b 
V,. = ~ ~ r '  [2.2] 

being a unit normal vector in the radial direction, and S(r, z) is a source term representing the 
droplet production due to entrainment. Equation [2.1] assumes that steady state conditions 
(0/0r - 0) have been achieved and give, on applying Green's theorem, 

a__ {U(z)C(r ,  z ) } -  S(r, z) = ,~ V?C(r, z), 
t~z [2.3] 

where 

V 2 _ 0  2 . I 0  
" = ~ ' ~  r Or" [2.4] 

"i'Of course, the diffusion coefficient could depend on downstream position if the flow is developing, but it is only under 
conditions where the axial velocity varies rapidly that we would expect axial variations in the diffusion coefficient to be 
significant. In any event, the asymptotic results to be presented in the paper are still valid. 
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Finally, if we transform to a system of coordinates which move with the gas velocity, i.e. if we 
write 

f' 
z = Zo+ U(t') dt', [2.51 

J t O 

so that 

we obtain 

0 1 0 
[2.6] 

Oz =- U(t) Ot' 

¢~ { U (t)C(r, t )} -  U (t)S(r, t) = A V ){ U(t)C(r, t)}. [2.71 

Equation [2.7] is an evolution equation for the concentration profile C(r, t) and is clearly a 
diffusion equation. It is assumed that the liquid films at the inner and outer walls of the annulus 
are perfect absorbers of the droplets and, furthermore, that as far as the gas core is concerned, 
the films are infinitely thin. The boundary conditions for [2.7] are therefore 

C(a, t) = C(b, t) = 0. [2.81 

At the inlet to the tube, z = zo (i.e. t = to), we assume that the droplets are distributed evenly 
over the annular region rl <~ r ~< r2, (a < rl, r2 < b). The initial conditions for [2.7] may then be 
written 

2 2 b - a  
C(r, O) = Cp ~ H(r2 - r ) H ( r -  r,), [2.9] 

where H(X)  denotes the step function, defined by 

H ( X ) = 0  if X < 0 ;  H ( X ) - - I  if X > 0 ,  [2.10] 

and Cp is a superficial concentration defined with reference to the complete annulus cross- 

section. 

2.2 The source terra 
The source of droplets is assumed to be at the tips of roll-waves, which are known to occur 

on thin liquid films in annular two-phase flow (Hewitt & Hall-Taylor 1970). If we assume that 
such a source can be replaced by continuous ring sources at ra(t) and rdt), of strength E~(t) 
and Edt)  respectively, then the source term may be written as 

a 
S(r, t) = r - ~  Ea(t)8{r-  ra(t)} + Eb(t)8{r-  rb(t)}, [2.11] 

where 8 (0  is the Dirac delta function. The factors a/ra(t) and b/rb(t) appear in [2.11] because 
E~(t) and Eb(t) are superficial mass fluxes defined per unit area of inner and outer tube wall, 

respectively. 
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2.3 Solution of the equation 
The solution of [2.7] is quite straightforward and may be written 

1 
C(r, t) = ~ [Ta(r, t) + Tb(r, t) + Tp(r, t)], [2.12] 

where Ta, Tb and Tp represent the contributions to the solution from the sources at ra(t) and 
rb(t) and the plug source (corresponding to the inlet flow) at t = 0. They are given by 

~r2s V a"2J°2(aa')U°(a"r) f '  
T,(r, t) = T ~r';'~o Jo2(a.a) - Jo2(a.b) Jo e-t'-'~*='2{ U(t')E~(t') Uo[anr~(t')]} dt', [2.13] 

where s stands for either a or b and 

To(r,t)= ~'2CeU(O) b2 -a  2 ~ Jo2(ana)Uo(a. r) e - ~ ,  
2 " r 2 ~ - l "  ~o Jo2(a.a)- Jo2(anb) I(r2, rt) • [2.14] 

In [2.13] and [2.14] Uo(ar) is defined by 

Uo( ar) = Jo( ar) Yo( ab ) - Yo( ar)Jo( ab ). [2.15] 

Jo and Yo are the Bessel functions of the first kind of zero order, a.  is the nth root of 
Uo(a.a) = O, the summation is taken over the positive roots a. and, finally, 

[rdUo(anr)] "2 
I(r2, rO= L dr .l~" [2.16] 

2.4 Asymptotic solutions 
We are primarily interested in the solution at large distances from the inlet, when equili- 

brium has been achieved, and therefore require the asymptotic form of solution [2.12] as t--> oo. 
Making use of the result that, for reasonably well-behaved functions x(t) which tend to a 
non-zero limit ;~ as t ~ oo, 

e-*='~'-"~x(t')dt'= X_ , 
AOl n 

[2.17] 

we find that 

= C( r ,  t )  

= aF'a 7r2 ~ [Jo2(a.a)Uo(a.r)Uo(a.ro)] 
2A ~ o [  Jo2(a.a)-Jo2(anb) J 

+ bF.b~r 2 ~ [Jo2(a,a)Uo(ctnr)Uo(a, Pb) ] 
[ Yo2t .a)-A2(a,b) J" 

The asymptotic deposition mass fluxes/~o a n d / ~  are given by 

f dC and /~  = - A 7 7  ,=b' •o =x 77 r:° 

[2.18] 

[2.19] 
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and may be written 

b - b 
log ~ + bEb log 

rb /5o = b ' [2.20] 
a log a 

aEa log ra + bEb log rb 
8 a 

/Sb = [2.21] 
b log b 

As a check on the results so far we see from [2.20], [2.21] that 

aEo + bEb = aDo + bDb, [2.22] 

which confirms that overall mass conservation is satisfied. 
It is appropriate to emphasize here that the problem has been formulated in a general way 

which allows not only for the fact that droplet deposition and entrainment are separate 
processes, governed by separate physical mechanisms, but also for the fact that deposition and 
entrainment could be entirely independent. This, of course, is not the case in annular two-phase 
flow. A result of the generality is [2.22] which simply expresses, overall mass balance. However, 
in order to obtain solutions relevant to vertical annular two-phase flow in which the deposition 
and entrainment rates are asymptotically constant it is necessary to impose separate equili- 
brium at each surface. For if this is not the case consider what would happen if Eo >/5o. Under 
these conditions the film on the wall at r = a would disappear at some axial location, thus 
making/~o zero and, as a consequence of the above inequality,/5o < 0. This is not an acceptable 
result.t We therefore write 

/5~=E"o, /~b=~"b, [2.23] 

and with this added restriction [2.20], [2.21] become degenerate and give 

b 

a log " 

[2.241 

2.5 Average asymptotic concentration 
One final result is required before we can relate mass transfer coefficients to the diffusion 

coefficient, namely the expression for the average asymptotic concentration ('o~. Making use of 
the properties of the functions Uo(a,r) we find 

2 b 

C'°~=b~-fo rC(r) dr 

= ,og ,as 

+ bEb(b'log~+a2logb-,b21ogb)]/[2A(b2-a2)logb]. 
[2.25] 

tThere is the theoretical possibility that the film thickness may appear and disappear intermittently in the downstream 
direction but this is not thought likely on physical grounds. 
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2.6 Relationships between the mass transfer coe~icients and the diHusion coeDicient 
The mass transfer coefficients for deposition onto r = a and r = b, ko and kb respectively, 

are defined by 

= --:-, kb = [2.26] 
Co~ ~ '  

and use of [2.24] gives the following expression for the ratio of ko to kb: 

b 
ko blog~ 
- -  = - -  [2.27] 

v o  kb a log  a 

The mass transfer coefficients can also be related to the diffusion coefficient through [2.25] 

giving 

( b  ~ - a ~) log _b_ 
a r# 

= _ , [2.28] 

2A 
a ~) log -~-- (b 2 _ 

kb (b 2 _ Pb 2) Iog ~- (Fa 2 -- a 2) log b_. [2.29] 
a rb 

As a check on the last two results we may take the limiting case a, ro -~0 and we find 

2Ab 
kb '" (b -~' [2.301 

which agrees with the result obtained by Hutchinson et al. (1974) for a round tube.T Finally we 

derive approximations to the results given by [2.27]-[2.29] which will be useful for discussion 
purposes. For thin films it is known experimentally that the wave height on a film of thickness 
m is approximately 5m and therefore we may assume that Po and ~b are close to a and b. We 

write 

Po=a+•o, •o~a;  Pb=b--eb, eb~b, [2.31] 

and substituting into [2.27]--[2.29] we find, to second order in the • terms, that 

= ~ x, - 2a - 2 b / '  [232]  

and, to first order in the • terms 

A 1 
ko = - - ~ - - ;  

~a ma 

A 1 
- -  oc - - .  [2.33] kb eb mb 

t l t  is also found that ko ~® in the limit Po, a--*0 which is what we could expect. 
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3. DISCUSSION 

Before drawing any conclusions from the above analysis it is appropriate to comment on the 
simplicity of the results given by [2.33]. That the mass transfer coefficients are proportional to 
the diffusion coefficient is reasonable. But it might appear strange that the length scales ~a and 
eb appearing in the denominator are characteristic of the film thickness, rather than the gas 
boundary layer thickness (as would occur, for example, in molecular diffusion). It is clear from 
the explanation given in section 2.1 why the thickness of the gas boundary layer plays no part in 
the present problem. Also, since e is the distance between the droplet source and sink it is 
reasonable that the mass transfer coefficients should decrease as e increases. The relation 
E -~ 5 m is a consequence of the hydrodynamics of the film flow. Hence, if the model of droplet 
deposition proposed by Hutchinson et al. (1971) is acceptable, the results expressed by [2.33] 
are physically reasonable. 

Unfortunately there appear to be no measurements of ka, kb, 6~ and eb for adiabatic flow in 
an annulus against which the above results can be tested. The work of Min et al. (1971) on 
adiabatic annular flow through an annulus, when analysed, predicts a mass transfer coefficient 
ratio of about 2-3. However, their results were obtained in a tube of length corresponding to 65 
hydraulic diameters whereas an estimate of the distance required to attain equilibrium (see 
Hutchinson et al. 1974) shows that a tube of length of order 103 hydraulic diameters would be 
required before the asymptotic approximations made in section 2 are valid. We therefore appeal 
to data obtained in heated flow in order to draw support for the above results. 

The result contained in [2.32] shows that, to first order, the ratio of the mass transfer 
coefficients is inversely proportional to the ratio of the film thicknesses. Whalley et al. (1975) 
found that the results of Jensen & Mannov (1974) for heated flow in an annulus could be 
accounted for satisfactorily when the dryout length was near a maximum for a given total heat 
flux, by taking the mass transfer coefficient ratio to be unity. The maximum dryout length 
occurs when the films on both surfaces of the annulus vanish at the same axial location. It is 
then plausible to assume that ~ and ~b are similar over a substantial length of the tube and the 
equality of the mass transfer coefficients is then predicted by [2.32]. In addition the predicted 
change in the mass transfer coefficient ratio with film thickness is, according to [2.32], small 
(-10~o) when representative values are used for the variables. Such behaviour is con- 
sisten~, with Whalley et al. (1975) observation that even under conditions in which the dryout 
power, and hence the ratio of film thicknesses, varied, the use of a mass transfer coefficient 
ratio of unity still enables the experimental results to be predicted quite well. The point is 
illustrated in figure 2, which shows a comparison of the predictions of Whalley et al. (1975) with 
the results of Jensen & Mannov (1974) plotted in the form dryout quality vs fraction of 
electrical heating power applied to the outer tube. The continuous line corresponds to optimized 
values of the mass transfer coefficients. It is seen that not only is the optimized ratio of mass 
transfer coefficients quite close to one but also that the agreement between theoretical and 
experimental predictions of the quality at dryout does not deteriorate significantly by using a 
mass transfer ratio of one. 

It should be noted that the experiments of Jensen & Mannov (1974) were carried out in a 
tube too short, again, for asymptotic approximations to be valid. It is, however, thought that 
Whalley et al. (1975) were able to predict their results with a mass transfer coefficient ratio in  
accord with the present theory for the following reason. Suppose that the approach to 
equilibrium occurs in a time of order ¢*. The length of tube required to attain equilibrium will 
then be of order V*¢*, where V* is a velocity typical of the gas core. In unheated flows, V* 
will be fairly constant and relatively large whereas in a heated flow, for a significant time, the 
quality will be low and hence V* will be relatively small. If it is legitimate to assume ¢* to be of 
the same order of magnitude in both heated and unheated flows, the above arguments lead to 
the conclusion that the length of tube required to reach equilibrium in unheated flow will be 
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Figure 2. Comparison of the predictions of Whalley et el. 0975) with results of Jensen & Manner (1974). 
(Taken from Whalley et el. (1975).) 
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greater than in a heated flow which has, say, the same quality at dryout as the quality of the 
unheated flow. 

The most interesting result of the above analysis, namely that the mass transfer coefficient 
for deposition onto a surface depends mainly on the film thickness on that surface justifies in a 
qualitative way the method of subdivision into subchannels employed by Whalley et al. (1975) 
and Whalley (1976) in their analyses of flow through annuli and rod bundles. 

Finally we note that the relationship given by [2.32] could be fed into a model for annular 
flow in an annulus and would remove the need for optimization of the predictions of the model. 
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NOMENCLATURE 

inner radius of annulus 
outer radius of annulus 
concentration of droplets 
deposition mass flux 
entrainment mass flux 
step function 
defined by [2.16] 
Bessel function of first kind or order zero 
mass transfer coefficient 
film thickness 
unit outward normal 
radial coordinate 
inner and outer plug source radii 
unit vector in outward radial direction 
source term 
dummy subscript 
solution term in diffusion equation, defined by [2.13], [2.14] 
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t transformed variable, defined by [2.5] 
U mean gas core velocity 
Uo defined by [2.15] 
V elementary volume 

V* typical gas core velocity 
Yo Bessel function of second kind of order zero 
z axial coordinate 

Greek symbols 
an root of Uo(ana) = 0 
8 Dirac delta function 

distance of entrainment source from wall 
A diffusion coefficient 
E elementary surface area 

r, T* time 
X arbitrary function of r 

Subscripts 
a inner surface of annulus 
b outer surface of annulus 

av average over annulus 
0 origin for coordinate transform 

- an overbar denotes asymptotic (t-~ oo) limit 
V, 2 radial Laplace operator 
Vr ~ component of gradient operator 
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